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model most frequently used when implementing structural analyses with material 

nonlinearity. 

Generally then the calcula-

tion codes available today al-

low the user to define the σ − ε 

curve by points, giving in this 

way the possibility to represent 

even very articulated stress-

strain laws, as we will see later. 

In § 13.1 we have mentioned 

the possibility to exploit this 

effect to increase the yield 

strength of the material, pro-

vided we can manage in some 

way the residual deformations; 

in fact from figure 13.20 it is 

clear that σYld2 > σYld1 > σYld: if 

the final machining operations 

on the component (let's say a 

shaft, i.e. a cylinder) are per-

formed after the pre-stress op-

erations, then the permanent 

deformations are "cancelled", so to say. Clearly with this operation the elastic limit is 

approached to the ultimate limit, thus making the component less resilient, i.e. more 

brittle. 

 

 

13.4 Beam in torsion beyond the elastic limit 

 

And since we've been talking about circular sections, an analogous speech to that 

made for a beam subjected to a pure bending moment can be repeated for a beam sub-

jected to pure torsion. To simplify the theoretical calculation we will use a solid circu-

lar section bar with diameter d = 40 mm and length L = 100 mm (actually the length 

does not have much importance, since the stress depends only on the diameter and the 

applied torque). Figure 13.21 shows the model made with 8-node brick elements of 

one quarter of the bar. The structure is doubly symmetrical, but the load is not. It is 

therefore essential to apply anti-symmetry constraints to the nodes lying in the sym-

metry planes (see Chapter 2). The surface at one end of the beam is clamped to 

ground, while at the other end the torque (a quarter of the total value, since we are 

analyzing a quarter of the structure!) is applied through a spider of rigid MPC ele-

ments. As in the case of bending, through Solid Mechanics relationships we are able to 

calculate what is the torque that causes the skin fibers to yield.If we suppose to em-

ploy the same material used previously (i.e. with σYLd equal to 290 MPa) we know that 

the corresponding shear stress is worth (it's easy to derive the following relation think-

ing about the Von Mises equation, which links σ and τ): 

 

Figure 13.20. σ−ε  diagram for a material with bilinear 

behavior. Once σYld1 is reached above the elastic limit, 

the specimen exhibits residual strain ε1 upon unloading. 

At this point any load below σYld1 causes the material to 

work elastically, but deformation ε1 remains. Exceeding 

σYld1 results in an increase of residual strain. 
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Therefore, being 
3

t

dπ

M16
τ

⋅
⋅= , it is immediate to derive Mt = 2104007 Nmm. 

Let's set this value aside for the moment. We will need it later to calculate the plas-

tic torsion margin for a solid circular section. 

Now, similarly to the case of bending, let's calculate the magnitude of the torque that 

makes a circular crown of 10 mm thickness plasticize. In other words, the core having a 

diameter d1 = 20 mm will continue to work in the elastic field, while the outer crown will 

be totally plasticized. We will have the situation shown in figure 13.22. 

 

 

Figure 13.21. Model of a quarter bar sub-

jected to pure torsion. Appropriate anti-

symmetry constraints were applied. 

Figure 13.22. Distribution of shear stresses. 

 

Once we have determined the value of this torque we will apply it to the finite ele-

ment model. Keeping in mind figure 13.22 and knowing that the τ act on elementary 

areas drdrda ⋅ϑ⋅=  we can write: 

 

∫ ∫ ⋅⋅+
⋅⋅

=
2π

0

r

r

Yld
Yld

3
1

tpl

1

darτ
16

τdπ
M   (13.1) 

 

By carrying out the double integral and the other operations we get: 

 

Mtpl = 2710671 Nmm 

 

Figure 13.23 shows the contour of the shear stress and its trend as a function of ra-

dius (along the line shown) when the torque just calculated is applied. The shear stress 

is expressed in a cylindrical reference system with the origin in the center of the bar 
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and with the z-axis directed as the axis of the bar itself. In particular, the plotted τ is 

τ23, which represents τzθ. 
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Figure 13.23. Shear stress. Since there are no other stress components, even in this case (as 

for the deflected beam with the plane stress model) it is possible to study directly the shear 

stress because this will be the only one to contribute to the Von Mises stress. 

 

Finally, figure 13.24 shows information about the residual shear stresses once the 

torque has been "released" in a subsequent load step. 

At this point, as we have done in the case of bending, we can calculate the coeffi-

cient of plastic collaboration. To do this, it is necessary to determine the torque that 

plasticizes 100% of the section. It is possible to do this using (13.1), keeping in mind 

that the first term (representing the triangular stress distribution) will be zero and that 

the extremes of integration along the radius will be different. 
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Figure 13.24. Residual shear stress. 

We will have: 

 

∫ ∫
π

⋅⋅τ=
2

0

r

0

Sn%100tpl darM  
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By solving the double integral we get Nmm.2798112
12

dπτ
M

3
Yld

tpl100% =⋅⋅=  

 

Therefore, the coefficient of plastic torsion collaboration for the circular section 

holds: 

 

33.1
2098584

2798112

M

M
C

t

tpl100%

plt ===  

 

This value is identical to the theoretical value [1]. In this case, unfortunately, the 

calculation for total plasticization fails even if a rotation is applied instead of a torque; 

the problem lies in the outermost elements that undergo too much deformation and 

prevent the solution from reaching convergence. 

 

 

13.5 Industry practice 

 

13.5.1 Drive shafts for racing car 

In the previous paragraphs, we have repeatedly mentioned a drive shaft for a racing 

car. Let's see then what are the advantages of pre-plasticizing such a component. In 

figure 13.25 we show a 120° portion of the model, moreover cut with a plane in corre-

spondence of the centerline; we will therefore need to introduce anti-symmetry con-

straints, since we are going to apply a torque. 
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Figure 13.25. CAD model of a drive shaft for 

an open wheel racing car. Given the axial 

symmetry (120°) and with respect to the length, 

we study only a sixth of it with the appropriate 

symmetry and anti-symmetry constraints. 

Figure 13.26. Bilinear σ−ε diagram for 

the material being used (NC310YW): 

σRp02 = 1790 MPa, σRt = 2150 MPa and 

A% = 9%. 

 

The section we are interested in is the central one, with an external diameter of 40 

mm and a thickness of 3.5 mm. The peak torque, measured several times with telemet-


